Elementary embeddings and correctness

Monroe Eskew
(joint with Sy Friedman)
Kurt Gödel Research Center University of Vienna
January 31, 2019
Hejnice Winter School

Kunen's theorem: no nontrivial $j: V \rightarrow V$

Kunen's inconsistency theorem can be generalized as follows:

Theorem

Suppose $j: M \rightarrow N$ is a nontrivial elementary embedding between models of ZFC with the same ordinals. Then at least one of the following holds:
(1) There is $\alpha \in M$ such that $\left\langle\alpha, j(\alpha), j^{2}(\alpha), j^{3}(\alpha), \ldots\right\rangle \notin M$.
(2) There is $\alpha \in M$ such that $j[\alpha] \notin N$.
(3) Some ordinal is regular in M and singular in N.

Theorem

Suppose $\kappa \leq \lambda$ are regular. κ is λ-supercompact if and only if there is a λ-closed transitive class M and a nontrivial elementary $j: M \rightarrow M$ with critical point κ and $\lambda<j(\kappa)$.

Amenable embeddings

We say $j: M \rightarrow N$ is amenable if $j[x] \in N$ for each $x \in M$.

Example

Suppose κ is Ramsey. Then there is a transitive $M \subseteq V_{\kappa}$ of size κ and $j: M \rightarrow V_{\kappa}$.

Example

Suppose κ is Ramsey. Then for each $n<\omega$, there are transitive sets $V_{\kappa}=M_{0} \supseteq \cdots \supseteq M_{n}$, each of size κ, and nontrivial amenable embeddings $j_{k, k-1}: M_{k} \rightarrow M_{k-1}$ for $1 \leq k \leq n$.

Example

Suppose κ is measurable. Then there are transitive sets $V_{\kappa}=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$, each of size κ, and nontrivial amenable embeddings $j_{k, k-1}: M_{k} \rightarrow M_{k-1}$ for $1 \leq k<\omega$.

Amenable embeddings: fixed point behavior

Example

Suppose κ is measurable. Then there is $M \subsetneq V_{\kappa}$ such that for each $\delta \in \kappa+1$, there is $j: M \rightarrow V_{\kappa}$ such that j has exactly ordertype- δ many fixed points above crit (j). They are all inaccessible.

Example

Suppose κ is a measurable limit of measurables. Then there is $M \subsetneq V_{\kappa}$ such that for each $\delta \in \kappa+1$ and each $f: \delta \rightarrow 2$, there is $j: M \rightarrow V_{\kappa}$ such that j has exactly ordertype- δ many fixed points above crit (j), and for all $i<\delta$, the $i^{t h}$ fixed point is regular iff $f(i)=1$.

Stationary tower

Definition (Woodin)

The stationary tower forcing $\mathbb{P}_{<\kappa}$ is the collection of stationary sets that are members of V_{κ}, ordered by $a \leq b$ if $\bigcup a \supseteq \bigcup b$ and $\{x \cap \bigcup b: x \in a\} \subseteq b$.

Theorem (Woodin)

Suppose κ is an inaccessible limit of completely Jónsson cardinals, and $G \subseteq \mathbb{P}_{<\kappa}$ is generic over V. Let $j: V \rightarrow M$ be the direct limit ultrapower embedding of V by G. Then $\kappa \in \operatorname{wfp}(M), j(\kappa)=\kappa$, and $j \upharpoonright V_{\kappa}$ is amenable.

Stationary tower

Corollary

If there is (a transitive model of) a measurable, then there is a sequence of countable transitive models of ZFC and embeddings:

$$
M_{0} \xrightarrow{j_{0}} M_{1} \xrightarrow{j_{1}} M_{2} \xrightarrow{j_{2}} \ldots
$$

such that all M_{n} have the same ordinals, and all j_{n} are amenable.

What happens for the direct limit M_{ω} ? By proceeding via an iterated forcing defined in M_{0}, we seem to get either:
(1) M_{ω} is not well-founded.
(2) M_{ω} is well-founded, but has an ordinal which is regular in M_{ω} and singular in M_{0}, so the maps $j_{n, \omega}$ are not amenable.

Treating the models like dirt

Let $\delta=M_{0} \cap$ Ord. Let $\left\langle\alpha_{i}: i<\omega\right\rangle$ be cofinal in δ. We select our sequence of generics for the stationary towers such that:
(1) $\left\langle\operatorname{crit}\left(j_{n, n+1}\right): n<\omega\right\rangle$ is increasing and cofinal in δ.
(2) For all n and all $i \leq n, \operatorname{crit}\left(j_{n, n+1}\right)>j_{i, n}\left(\alpha_{n}\right)$.

This implies:
(1) The direct limit $M_{\omega}=\bigcup_{n<\omega} M_{n}$.
(2) For each n and $x \in M_{n}$, there is $m \geq n$ such that $\operatorname{crit}\left(j_{m, \omega}\right)>|x|$, so that $j_{n, \omega}[x]=j_{m, \omega}\left(j_{n, m}[x]\right) \in M_{\omega}$.

By an induction, we can build chains of length any countable ordinal.

Category description

Consider a category consisting of models of ZFC with the same ordinals, and arrows some collection of elementary embeddings between them closed under composition.

For example, given $M \models$ ZFC, let $\operatorname{AmOut}(M)$ be the category of N with the same ordinals such that there is an amenable $j: M \rightarrow N$, with arrows all amenable embeddings between these models.

A partial order can be represented as a category in which there is at most one arrow between any two objects. Besides countable ordinals, what kinds of partial orders appear as subcategories of $\operatorname{AmOut}(M)$ for some ctm M ?

One thing for free: countable well-founded posets.

Incompatibility-preserving embeddings of trees

Theorem (Habič et al.)

If M is a countable transitive model of ZFC and κ is a regular cardinal in M, then there are $\left\langle G_{i}: i<\omega\right\rangle$ which are $\operatorname{Add}(\kappa)$-generic over M and such that no ZFC model with the same ordinals as M contains any two of them.

Fact

If $M \models \kappa^{<\kappa}=\kappa$, then for large enough $\theta>\kappa$, the stationary tower $\mathbb{P}_{<\theta}$ absorbs a generic for $\operatorname{Add}(\kappa)$.

So starting with a ctm $M=M_{\emptyset}$ with enough large cardinals inside, we can build a tree of models $\left\langle M_{\sigma}: \sigma \in{ }^{<\omega} \omega\right\rangle$ such that if $\sigma \triangleleft \tau$, then there is an amenable $j_{\sigma, \tau}: M_{\sigma} \rightarrow M_{\tau}$, and if $\sigma \perp \tau$, then there is no ZF model $N \supseteq M_{\sigma} \cup M_{\tau}$ with the same ordinals.

Incompatibility-preserving embeddings of trees

If we control the critical points like before, we can ensure that direct limit along any branch r yields an amenable $j: M_{\sigma} \rightarrow M_{r}$ for $\sigma \triangleleft r$, and M_{r} has the same ordinals as M.

As before, we can continue to get copies of the tree ${ }^{<\alpha} \omega$ for any countable α. So for many ctm M and any countable tree T, there is a "nice" functor $F: T \rightarrow \boldsymbol{A m O u t}(M)$, where x, y incomparable implies $F(x), F(y)$ non-amalgamable.

What else can we find in $\operatorname{AmOut}(M)$?

Pseudotrees

Definition

A pseudotree is a poset that is linearly ordered below any element.

Let us consider the following pseudotree $T_{\mathbb{Q}}$. Collections of partial functions $f: \mathbb{Q} \rightarrow \omega$ such that:
(1) $\operatorname{dom}(f)$ is an initial segment of \mathbb{Q} (possibly \emptyset).
(2) If $\operatorname{dom}(f) \neq \emptyset$, then there is a finite sequence
$-\infty=q_{0}<q_{1}<\cdots<q_{n}=\max (\operatorname{dom} f)$ such that $f \upharpoonright\left(q_{i}, q_{i+1}\right]$ is constant for $i<n$.

Put $f \leq g$ when $f \subseteq g$.

Pseudotrees with meets

Notice that $T_{\mathbb{Q}}$ satisfies the following axiom set (DPT):
(1) It's a pseudotree with a least element 0 .
(2) Every two elements f, g have an infimum $f \wedge g$.
(3) Infinite Splitting: For all $g, f_{0}, \ldots, f_{n-1}$ such that $f_{i} \wedge f_{j}=g$ for $i, j<n$, there is a different $f_{n}>g$ such that $f_{i} \wedge f_{j}=g$ for $i, j \leq n$.
(9) Density: If $g<f$, there is h such that $g<h<f$.

Lemma

Suppose T satisfies the DPT axioms. Suppose S is a structure in the language $\{\leq, \wedge\}$ satisfying (1) and (2). Suppose S_{0} is a finite substructure of $S, \pi: S_{0} \rightarrow T$ is an embedding, and $x \in S$. Then there is a finite substructure $S_{1} \supseteq S_{0} \cup\{x\}$ and π can be extended to an embedding $\pi^{\prime}: S_{1} \rightarrow T$.

Pseudotrees with meets

Corollary

Any countable pseudotree with meets can be embedded into $T_{\mathbb{Q}}$. Any countable structure satisfying the above axioms is isomorphic to $T_{\mathbb{Q}}$.

Lemma

Any pseudotree is a substructure of a pseudotree with meets.

Proof: Represent the poset as a system of sets under \subseteq and add finite intersections.

III-founded magic

Recall: If there is a ctm of ZFC+ "There is an inaccessible limit κ of completely Jónsson cardinals," then letting M be the cut of this model at such κ, then for every countable ordinal α, there is a subcategory of AmOut (M) isomorphic to ${ }^{<\alpha} \omega$, where branching results in non-amalgamability.
If there is (a transitive model of) a measurable, then there are ctm's $M_{0} \in M_{1}$ such that $M_{1} \models M_{0}$ is a ctm of ZFC + "There is inaccessible limit of completely Jónsson cardinals." We can take M_{1} to be of the form $L_{\xi}[r]$ for some real r and countable ordinal ξ.

The above reasoning shows that $L_{\xi}[r] \models$ "For all countable α, there is a nice functor from ${ }^{<\alpha} \omega$ to $\operatorname{AmOut}(M)$, for appropriate $M \in M_{0}$.

III-founded magic

Fact

If we force with $\mathcal{P}\left(\omega_{1}\right) /$ NS over $L_{\xi}[r]$, then we get a generic embedding $j: L_{\xi}[r] \rightarrow U$ such that ω_{1}^{U} is ill-founded, but $\omega_{2}^{L_{\xi}[r]} \subseteq \operatorname{wfp}(U)$.

In particular, $j\left(M_{0}\right)=M_{0}$.
Let δ be the set of well-founded ordinals in Ord^{U}. For each $\gamma \in \operatorname{Ord}^{U}, U$ has a decomposition by Cantor Normal Form,

$$
\alpha=\omega^{\beta_{n}} \cdot k_{n}+\cdots+\omega^{\beta_{m}} \cdot k_{m}+\omega^{\beta_{m-1}} \cdot k_{m-1}+\cdots+\omega^{\beta_{0}} \cdot k_{0}
$$

Where $\beta_{n}>\cdots>\beta_{0}, \beta_{0}, \ldots, \beta_{m-1}<\delta$ and $\beta_{m}, \ldots, \beta_{n}$ are ill-founded.
Let α be an ill-founded ordinal that U believes is countable. U believes that there is a nice functor from ${ }^{<\alpha} \omega$ to $\operatorname{AmOut}(M)$.
The collection of levels of ${ }^{<\alpha} \omega$ which have trivial well-founded component is a dense linear order. The restriction of ${ }^{<\alpha} \omega$ to these levels satisfies DPT.

Conclusions and Questions

In particular, every countable linear order is isomorphic to a subcategory of AmOut (M). For cheap we get the same for countable partial orders.

We can also show that this category does not contain a subcategory isomorphic to an uncountable linear order.

Question

Is it possible to find M_{0}, M_{1}, N models of ZFC with the same ordinals, and M_{0}, M_{1} are \subseteq-incomparable, and there are (amenable) $j_{0}: M_{0} \rightarrow N$, $j_{1}: M_{1} \rightarrow N$?

Question

Is it possible to find $M \neq N$ models of ZFC with the same ordinals such that there are elementary $j: M \rightarrow N$ and $i: N \rightarrow M$?

